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Abstract 
 

This paper presents a novel technique for camera 

tampering detection. It is implemented in real-time and 

was developed for use in surveillance and security 

applications. This method identifies camera tampering 

by detecting large differences between older frames of 

video and more recent frames. A buffer of incoming 

video frames is kept and three different measures of 

image dissimilarity are used to compare the frames. 

After normalization, a set of conditions is tested to 

decide if camera tampering has occurred. The effects 

of adjusting the internal parameters of the algorithm 

are examined. The performance of this method is 

shown to be extremely favorable in real-world settings. 

 

1. Introduction 
 

Busy public places such as malls, airports, and 

public transportation stations often have significantly 

large numbers of surveillance cameras installed. 

Simultaneously monitoring this many live camera feeds 

for an extended period of time is a daunting task, even 

for the most alert security personnel. It is clear that any 

automation that is introduced could greatly improve the 

effectiveness of a surveillance system working under 

these circumstances. Detection of camera tampering is 

an important problem in such situations. If the 

tampering is intentional, it could be indicative of a 

more profound suspicious activity to which security 

personnel should be alerted. If unintentional, the 

tampering should still be noted since it may reduce the 

surveillance capabilities of the camera. 

Detecting camera tampering can be a deceptively 

easy problem. First, the exact definition of what 

constitutes camera tampering must be established. For 

this work, camera tampering is defined as any sustained 

event which dramatically alters the image seen by the 

camera. Some examples of camera tampering are a 

person holding his/her hand in front of the camera, 

spray painting the lens, or turning the camera so that it 

points in a different direction. Such an event must be 

sustained for several seconds in order to be detected. 

The camera location is an important consideration 

since there may be events that are harmless and 

expected but still cause large changes in the image, and 

these should be distinguished from real tampering 

events. For example, for cameras mounted in a train 

station, the system should be insensitive to the motion 

of trains and large crowds of people in the scene. 

The approach used here can be summarized as 

follows. First, incoming frames of video are stored in 

buffers. The computation is done in two major stages: 

1. Recent frames of video are compared to older 

frames using several measures of image 

dissimilarity. 

2. Based on these measures, a set of rules is 

evaluated to decide if camera tampering has 

occurred. 

This approach is based on the idea that, in general, 

camera tampering will cause the most recent frames of 

video to be significantly different than the older frames. 

Since we are only interested in detecting sustained 

events (as opposed to transient events), it is necessary 

to compare the recent and old frames in a more robust 

way than simple frame-to-frame comparisons. This will 

be discussed in Section 3. The rule base was developed 

as a result of significant experimentation, and has 

thresholds which can be adjusted by the user based on 

the specific environment. The underlying idea here is 

that if results based on several different measures of 

image dissimilarity (i.e., image features) are compared, 

real tampering events can be identified robustly. This is 

of course conditioned on the fact the image 

dissimilarity measures are chosen well. The method 

presented here yields very favorable results when 

detecting actual camera tampering events, and is 

insensitive to changes in illumination and other non-

tampering events. 
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2. Related work 
 

Much research has been done regarding detection of 

tampering with or modification of prerecorded video. 

For example, [1], [6], and [7] deal with data embedding 

and watermarking techniques in order to classify video 

as either authentic or tampered. While these 

contributions are significant, they are not directly 

related to this problem, since our goal is to create a 

system that monitors live video and detects physical 

camera tampering in real-time.  

Another area of research in computer vision in 

which there has been an immense amount of research is 

motion estimation. In [8], a factorization method is 

used in order to estimate structure and motion. In [9], a 

linear least-squares minimization technique is 

employed to achieve the same objective.  These are two 

of the fundamental papers in the area. These and 

similar techniques have potential usefulness in 

estimating the camera motion for tampering events 

where a person physically turns the camera to point in a 

different direction. However, both of these works 

assume a rigid environment, and thus would be of only 

limited utility in the current application. Furthermore, 

in this application, estimating the motion of the camera 

is not as important as simply recognizing that camera 

motion has occurred and issuing an alarm accordingly. 

In order to detect other types of camera tampering, 

such as a person covering the lens of the camera with a 

hand or other object, there are several existing 

algorithms which might be employed, including much 

of the work related to scene change and shot detection. 

For example, the work in [5] focuses on detecting 

gradual scene changes in movies, such as fade in/fade 

out, dissolve, and wipe using B-spline interpolation 

curve fitting. However, this work assumes smooth 

transitions, which may not be the case with camera 

tampering. In [2], the authors model each shot as a set 

of edges in the image, and take a scene/shot change to 

be anytime when there is a significant change in these 

edges throughout the image. This may not be the case 

with camera tampering, since a hand entering the scene 

and eventually covering the lens would not constitute 

smooth transition of edges from one shot fading into 

the edges of another. 

The authors of [10] attempt to detect scene changes 

by optimizing a color-based shot detection algorithm 

and discuss with use of color histograms to detect 

significant changes in the scene. Similarly, [3] uses 

both histogram-based and pixel-based features to 

measure image dissimilarity, and also to classify 

transitions by type. Histogram-based methods in 

general are well suited for detection of camera 

tampering, since they offer global measures of image 

content and are sensitive to most types of significant 

changes in the image regardless of their nature or 

cause. 

There are, however, some fundamental differences 

between camera tampering detection and shot 

detection. By definition, shot changes are expected to 

occur frequently in a movie. In addition, shot detection 

algorithms are usually expected to be relatively 

insensitive to smooth camera rotation. Also, shot/scene 

changes are often modeled as rapid or transient 

transitions, and thus image features can be compared 

by looking only at consecutive frames of video. 

On the other hand, camera tampering detection 

algorithms should be sensitive to any significant 

camera motion. The number of false detection events 

should be minimized, since this system will trigger an 

alarm that attracts the attention of security personnel 

each time an event is detected (whereas in shot 

detection it may be prudent to err in the opposite 

direction). Finally, perhaps the most important 

difference is that camera tampering is a sustained event 

(which can be either rapid or smooth), and thus more 

sophisticated and robust comparisons need to be made 

between frames of video in order that the module will 

be insensitive to transient changes which should not be 

considered tampering. These ideas will be elaborated 

on in the following section. 

 

3. Approach 
 

The method described here is based on the principle 

that when camera tampering occurs, the most recent 

frames of video will be significantly different than the 

older frames. As live video is received by the program, 

it is stored in two different buffers. The first buffer is 

labeled as the short-term pool, and stores frames that 

are less than 10-50 seconds old (depending on the 

setting chosen by the user). The second buffer is the 

long-term pool, which stores frames until they are an 

additional two minutes old. 

Both of these are first in-first out (FIFO) structures, 

and frames that are evicted from the short-term pool 

(once they become older than the user-defined time 

 
Short-term Pool Long-term PoolShort-term Pool Long-term Pool

 
Figure 1. Incoming frames of video are stored in the 
short-term and long-term pools. 
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threshold) are inserted into the long-term pool. Frames 

that are evicted from the long-term pool are no longer 

stored. An illustration of this structure can be seen in 

Figure 1. For all of the subsequent analysis, the length 

of the short-term pool was set to ten seconds (sampled 

at 3 frames per second), which was found to provide a 

good balance between timely event detection, 

computational burden, and insensitivity to transient 

events. The long-term pool held about sixty video 

frames equally spaced in time to cover a period of two 

minutes. 

 

3.1. Comparing the new frames with the old 
 

Each time a new frame is pushed into the short-term 

pool, the short-term and long-term pools must be 

compared in order to determine if camera tampering 

has occurred. The approach presented here uses three 

different measures of image dissimilarity to compare 

the frames. However, in order to simplify introduction 

of the general concepts of the algorithm, before 

elaborating on the actual measures used, a generic 

measure of image dissimilarity will be assumed, and 

the process is described just for this generic measure. 

Following this description of the procedure, the actual 

measures of image dissimilarity will be introduced and 

the process will be specialized to use these. 

Using a generic measure of image dissimilarity, 

every frame in the short-term pool is compared to every 

frame in the long-term pool. The median of all these 

measurements is taken and will be called Dbetween, since 

it represents the difference between the two pools. 

Similarly, the median image difference between all 

pairs of long-term frames is calculated, and denoted 

Dlong.  

The median is used to represent the overall image 

dissimilarity of multiple frames of video because it is a 

robust statistic (a stable indicator of central tendency). 

It is not affected by a relatively large fraction of 

outliers, (i.e., transient events in our application). 

Consider what happens when tampering occurs. As 

new frames of video are received, one would expect the 

median of the intra-short-term pool measurements to be 

affected as soon as approximately half of the short-term 

frames are contaminated by the tampering event. If the 

length of the short-term pool is set to ten seconds, as 

was done here, then it would take approximately five 

seconds for the median to be effected by the camera 

tampering. In this way sustained events are 

distinguished from transient ones. 

The two measurements are combined into a single 

normalized measure as shown below: 

 

 ( )
longbetweennorm DDD /log= .  (1) 

 
The normalization above was chosen because it 

accentuates differences between the short-term and 

long-term pools, which is desirable in that these 

differences are assumed to indicate camera tampering. 

It is reminiscent of the Fisher Linear Discriminant 

method, where the between-class scatter is normalized 

by the sum of intra-class scatters in order to maximize 

the distance between the classes while minimizing the 

intra-class variance [4]. If the long- and short-term 

pools are thought of as separate classes, then it is 

desirable to maximize the between-class scatter when 

tampering occurs in order to emphasize the event. 

Furthermore, the long-term pool contains a history of 

what has happened in the past, and thus normalizing by 

it yields a measurement that represents the difference 

between the current and past frames with respect to 

past (typical) differences. 

 

3.2. Measuring image dissimilarity 
 

In the preceding subsection a generic measure of 

image dissimilarity was assumed for simplicity of 

explanation. In reality, the process described above is 

repeated each time a new frame is sampled using three 

different image dissimilarity functions. The ideal image 

dissimilarity measure is one that is insensitive to small 

camera rotations and translations, but is sensitive to 

changes in both shape and color content. It should also 

be illumination invariant, but not completely 

insensitive to extreme changes in illumination, since 

extreme changes may represent tampering. Since it 

would be difficult to define one image dissimilarity 

measure that exhibited all these characteristics, a 

variety of measures are used here in order to extract the 

most useful information. They are described below, and 

values of these parameters from one of the test videos 

are shown in Section 4. 

 

3.2.1. Histogram chromaticity difference. 

 

For each image (i.e., frame of video), a normalized 

RGB histogram is calculated. This is a two-

dimensional histogram, where the two axes represent 

the normalized red and green components of each 

pixel, respectively (the blue component in normalized 

RGB representation is uniquely determined by the 

other two and is therefore ignored). The bin assignment 

for pixel i with components Ri, Gi, and Bi is calculated 

according to Equation  (2). 

To calculate the dissimilarity between two images, 

the sum of absolute-value differences of their two 
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histograms is computed. For images I1 and I2 with 

histograms H1 and H2, respectively, the image 

dissimilarity is calculated according to: 

 ( )

( )iiiGiG
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BGRNumBinsGBin

BGRNumBinsRBin
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/

/  (2) 
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The normalized RGB histogram is fairly insensitive 

to illumination changes, since the normalized RGB 

color space is illumination-invariant for Lambertian 

surfaces, and therefore the measure is sensitive only to 

color change. A measure of image dissimilarity that is 

even less sensitive to illumination changes could be 

formulated, but the video coming from CCTV 

surveillance cameras is often of poor color quality due 

to the limited chrominance bandwidth, and the cameras 

themselves are rarely color-calibrated. In such cases, 

the computation of more sophisticated photometric 

invariants based on color is not reliable. 

 

3.2.2. Histogram L1R difference. 

 

A two-dimensional histogram is calculated for each 

image where, for each pixel, the axes are the sum (L1-

norm) and range (R) of the red, green, and blue 

components of the pixel. The bin assignments for pixel 

i are calculated according to the following equations: 

  
( )

( ) .),,min(),,max(

311

RiiiiiiR

LiiiL

NumBinsBGRBGRBin

NumBinsBGRBin

−=

++=  

 (4) 

Again, the dissimilarity between two images is 

calculated by summing the absolute-values of 

differences between the histograms of the images. 

The L1-norm value for any given pixel is 

proportional to its intensity, while the range is related 

to its saturation. This measure is sensitive to changes in 

illumination, which should be taken into account. Even 

though some change in illumination should be ignored, 

more extreme changes should be recognized and 

considered tampering. It has also been established that 

the L1-norm is a better similarity measure than the L2-

norm [3]. 

 

3.2.3. Histogram gradient direction difference. 

 

Each image is first convolved with the 3x3 Sobel 

kernels. These convolved images are used to estimate 

the gradient direction Dir(i,j) at each pixel location 

(i,j), where Dir(i,j) is in the range [-π, π]. Next, a one-

dimensional histogram is formed, where the axis 

represents the gradient direction of a given pixel. The 

bin assignment for pixel (i,j) is calculated using the 

following equation: 

 

 ( ) GradDirGradDir NumBinsjiDirBin
2

),(1 π
π

+= .  (5) 

 

The dissimilarity between two images is given by 

the sum of absolute-vale differences between the two 

histograms. Since the pixel gradient orientations are 

insensitive to both change in illumination and slight 

camera movements, this measure is extremely robust. 

 

3.3. Detecting camera tampering 
 

Each time a new frame is pushed into the short-term 

pool, the three dissimilarity measures described above 

are computed. Based on these three values the decision 

is made as to whether tampering has occurred by 

evaluating a set of conditions, each of which is given 

by a set of three thresholds. For each condition, if the 

three thresholds are exceeded, the condition is 

evaluated as true. If any of the conditions are true, the 

decision is made that tampering has occurred. For all 

the results presented in this paper, the thresholds were 

tuned for optimal performance based on a set of 

training videos. 

 

4. Results 
 

This algorithm was tested on an extensive set of test 

videos totaling over 19 hours in duration. The videos 

were filmed in a variety of different environments, 

including various lighting conditions. They contained a 

number of different camera tampering and non-

tampering events. In order to test the robustness of the 

proposed method, the test videos contained events that 

changed the scene significantly but are not considered 

camera tampering.  The videos contained such events 

as large crowds of people entering/exiting the scene, 

very large objects (i.e., trains, buses) passing through 

the scene, and extreme changes in illumination, both 

sudden and gradual. Figure 2 shows some snapshots 

from the test videos, some with tampering.   

Figure 3 shows the values of the three normalized 

image dissimilarity measures for one of the test videos. 

Note that these measures are responsive to camera 

tampering, as shown by their increased values during 

tampering events. Figure 4 shows normalized 

histograms of the three dissimilarity measures for both 

frames of video with and without tampering. The 

histogram values were normalized by the total number 

of frames in the class (tampering and non-tampering 
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frames were normalized separately) in order to equalize 

the overwhelming number of frames without tampering 

as compared to those with tampering. From this figure, 

it can clearly be seen that for all three image features, 

there is good separation between the tampering and 

non-tampering frames. This is also seen in Figure 5, 

which shows the scatter plot of the three feature values. 

Even though there is some overlap between the two 

classes, most tampering events are detected 

successfully since each tampering event is a set of the 

red tampering points in the figure, and only one of 

them needs to be in the decision region in order for the 

event to be detected. 

Finally, the results for various different values of 

thresholds are shown in Table 1. The column on the 

left indicates the threshold values as a percentage of the 

optimal values. For each set of thresholds the number 

of missed events, number of false alarms, percent 

alarms true (PAT), and percent events detected (PED) 

are shown. Notice that as the threshold values increase, 

the number of false alarms decreases, but the number 

of undetected tampering events increases. When the 

thresholds are optimal (the row labeled 100% in the 

table), the tradeoff between the number of false alarms 

 

 
Figure 2. Some frames from the test videos. The 

last three snapshots include camera tampering. 

and the number of missed tampering events is 

optimized (roughly speaking, we consider a missed 

alarm to be three times as important as a false one). At 

the optimal threshold values, there were five false 

alarms and one tampering event that was not detected. 

However, both the events that were not detected and 

those that were detected erroneously were borderline 

tampering events. For example, four of the five false 

alarms were due to extreme changes in illumination (a 

light being flipped off), where the entire image 

becomes dark for several frames until the camera 

aperture size is adjusted.  Events such as large crowds 

entering the scene, severe changes in illumination due 

to dark passing clouds, and trains and buses passing 

through the scene were successfully classified as non-

tampering. 
  
Table 1. Results for different threshold values, 
given as percentages of the optimal values. 

Thresholds 
False 
Alarms* 

Missed 
Events* PAT PED 

75% 23 0 46.8% 100% 

80% 14 0 58.8% 100% 

85% 12 0 62.5% 100% 

90% 10 0 66.7% 100% 

95% 7 0 74.1% 100% 

100% 5 1 79.2% 95% 

105% 4 3 81.0% 85% 

110% 4 3 81.0% 85% 

115% 4 4 80.0% 80% 

120% 4 4 80.0% 80% 

125% 4 4 80.0% 80% 

130% 4 5 79.0% 75% 

135% 4 6 77.8% 70% 

140% 4 6 77.8% 70% 

145% 4 7 76.5% 65% 

150% 4 7 76.5% 65% 

* Total 20 real tampering events   
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Figure 3. Values of the three normalized image 
dissimilarity measures. The black line 
indicates when tampering occurs. 
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5. Conclusion 
 

We have presented a technique for detection of 

camera tampering that can be implemented in real-time. 

The method is based on robust comparisons of recent 

and older frames of video using three different 

measures of image dissimilarity. Optimal threshold 

values were used in order to decide whether tampering 

has occurred. This method is insensitive to changes in 

illumination, small camera movements, and transient 

non-tampering events. Experimental results have been 

presented which demonstrate a high detection rate 

while at the same time issuing a very small number of 

false alarms. 
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Figure 4. Normalized histograms of image 
dissimilarity values with and without tampering. 

 
Figure 5. Scatter-plot of image dissimilarity 
values for frames with and without tampering. 
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