
Real-Time Detection of Camera Tampering

Evan Ribnick, Stefan Atev, Osama Masoud, Nikolaos Papanikolopoulos, and Richard Voyles

Artificial Intelligence, Robotics, and Vision Laboratory

University of Minnesota, Minneapolis, MN 55455

{ribnick, atev, masoud, npapas, voyles}@cs.umn.edu

Abstract

This paper presents a novel technique for camera

tampering detection. It is implemented in real-time and

was developed for use in surveillance and security

applications. This method identifies camera tampering

by detecting large differences between older frames of

video and more recent frames. A buffer of incoming

video frames is kept and three different measures of

image dissimilarity are used to compare the frames.

After normalization, a set of conditions is tested to

decide if camera tampering has occurred. The effects

of adjusting the internal parameters of the algorithm

are examined. The performance of this method is

shown to be extremely favorable in real-world settings.

1. Introduction

Busy public places such as malls, airports, and

public transportation stations often have significantly

large numbers of surveillance cameras installed.

Simultaneously monitoring this many live camera feeds

for an extended period of time is a daunting task, even

for the most alert security personnel. It is clear that any

automation that is introduced could greatly improve the

effectiveness of a surveillance system working under

these circumstances. Detection of camera tampering is

an important problem in such situations. If the

tampering is intentional, it could be indicative of a

more profound suspicious activity to which security

personnel should be alerted. If unintentional, the

tampering should still be noted since it may reduce the

surveillance capabilities of the camera.

Detecting camera tampering can be a deceptively

easy problem. First, the exact definition of what

constitutes camera tampering must be established. For

this work, camera tampering is defined as any sustained

event which dramatically alters the image seen by the

camera. Some examples of camera tampering are a

person holding his/her hand in front of the camera,

spray painting the lens, or turning the camera so that it

points in a different direction. Such an event must be

sustained for several seconds in order to be detected.

The camera location is an important consideration

since there may be events that are harmless and

expected but still cause large changes in the image, and

these should be distinguished from real tampering

events. For example, for cameras mounted in a train

station, the system should be insensitive to the motion

of trains and large crowds of people in the scene.

The approach used here can be summarized as

follows. First, incoming frames of video are stored in

buffers. The computation is done in two major stages:

1. Recent frames of video are compared to older

frames using several measures of image

dissimilarity.

2. Based on these measures, a set of rules is

evaluated to decide if camera tampering has

occurred.

This approach is based on the idea that, in general,

camera tampering will cause the most recent frames of

video to be significantly different than the older frames.

Since we are only interested in detecting sustained

events (as opposed to transient events), it is necessary

to compare the recent and old frames in a more robust

way than simple frame-to-frame comparisons. This will

be discussed in Section 3. The rule base was developed

as a result of significant experimentation, and has

thresholds which can be adjusted by the user based on

the specific environment. The underlying idea here is

that if results based on several different measures of

image dissimilarity (i.e., image features) are compared,

real tampering events can be identified robustly. This is

of course conditioned on the fact the image

dissimilarity measures are chosen well. The method

presented here yields very favorable results when

detecting actual camera tampering events, and is

insensitive to changes in illumination and other non-

tampering events.

Proceedings of the IEEE International Conference
on Video and Signal Based Surveillance (AVSS'06)
0-7695-2688-8/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 2, 2009 at 05:50 from IEEE Xplore. Restrictions apply.

2. Related work

Much research has been done regarding detection of

tampering with or modification of prerecorded video.

For example, [1], [6], and [7] deal with data embedding

and watermarking techniques in order to classify video

as either authentic or tampered. While these

contributions are significant, they are not directly

related to this problem, since our goal is to create a

system that monitors live video and detects physical

camera tampering in real-time.

Another area of research in computer vision in

which there has been an immense amount of research is

motion estimation. In [8], a factorization method is

used in order to estimate structure and motion. In [9], a

linear least-squares minimization technique is

employed to achieve the same objective. These are two

of the fundamental papers in the area. These and

similar techniques have potential usefulness in

estimating the camera motion for tampering events

where a person physically turns the camera to point in a

different direction. However, both of these works

assume a rigid environment, and thus would be of only

limited utility in the current application. Furthermore,

in this application, estimating the motion of the camera

is not as important as simply recognizing that camera

motion has occurred and issuing an alarm accordingly.

In order to detect other types of camera tampering,

such as a person covering the lens of the camera with a

hand or other object, there are several existing

algorithms which might be employed, including much

of the work related to scene change and shot detection.

For example, the work in [5] focuses on detecting

gradual scene changes in movies, such as fade in/fade

out, dissolve, and wipe using B-spline interpolation

curve fitting. However, this work assumes smooth

transitions, which may not be the case with camera

tampering. In [2], the authors model each shot as a set

of edges in the image, and take a scene/shot change to

be anytime when there is a significant change in these

edges throughout the image. This may not be the case

with camera tampering, since a hand entering the scene

and eventually covering the lens would not constitute

smooth transition of edges from one shot fading into

the edges of another.

The authors of [10] attempt to detect scene changes

by optimizing a color-based shot detection algorithm

and discuss with use of color histograms to detect

significant changes in the scene. Similarly, [3] uses

both histogram-based and pixel-based features to

measure image dissimilarity, and also to classify

transitions by type. Histogram-based methods in

general are well suited for detection of camera

tampering, since they offer global measures of image

content and are sensitive to most types of significant

changes in the image regardless of their nature or

cause.

There are, however, some fundamental differences

between camera tampering detection and shot

detection. By definition, shot changes are expected to

occur frequently in a movie. In addition, shot detection

algorithms are usually expected to be relatively

insensitive to smooth camera rotation. Also, shot/scene

changes are often modeled as rapid or transient

transitions, and thus image features can be compared

by looking only at consecutive frames of video.

On the other hand, camera tampering detection

algorithms should be sensitive to any significant

camera motion. The number of false detection events

should be minimized, since this system will trigger an

alarm that attracts the attention of security personnel

each time an event is detected (whereas in shot

detection it may be prudent to err in the opposite

direction). Finally, perhaps the most important

difference is that camera tampering is a sustained event

(which can be either rapid or smooth), and thus more

sophisticated and robust comparisons need to be made

between frames of video in order that the module will

be insensitive to transient changes which should not be

considered tampering. These ideas will be elaborated

on in the following section.

3. Approach

The method described here is based on the principle

that when camera tampering occurs, the most recent

frames of video will be significantly different than the

older frames. As live video is received by the program,

it is stored in two different buffers. The first buffer is

labeled as the short-term pool, and stores frames that

are less than 10-50 seconds old (depending on the

setting chosen by the user). The second buffer is the

long-term pool, which stores frames until they are an

additional two minutes old.

Both of these are first in-first out (FIFO) structures,

and frames that are evicted from the short-term pool

(once they become older than the user-defined time

Short-term Pool Long-term PoolShort-term Pool Long-term Pool

Figure 1. Incoming frames of video are stored in the
short-term and long-term pools.

Proceedings of the IEEE International Conference
on Video and Signal Based Surveillance (AVSS'06)
0-7695-2688-8/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 2, 2009 at 05:50 from IEEE Xplore. Restrictions apply.

threshold) are inserted into the long-term pool. Frames

that are evicted from the long-term pool are no longer

stored. An illustration of this structure can be seen in

Figure 1. For all of the subsequent analysis, the length

of the short-term pool was set to ten seconds (sampled

at 3 frames per second), which was found to provide a

good balance between timely event detection,

computational burden, and insensitivity to transient

events. The long-term pool held about sixty video

frames equally spaced in time to cover a period of two

minutes.

3.1. Comparing the new frames with the old

Each time a new frame is pushed into the short-term

pool, the short-term and long-term pools must be

compared in order to determine if camera tampering

has occurred. The approach presented here uses three

different measures of image dissimilarity to compare

the frames. However, in order to simplify introduction

of the general concepts of the algorithm, before

elaborating on the actual measures used, a generic

measure of image dissimilarity will be assumed, and

the process is described just for this generic measure.

Following this description of the procedure, the actual

measures of image dissimilarity will be introduced and

the process will be specialized to use these.

Using a generic measure of image dissimilarity,

every frame in the short-term pool is compared to every

frame in the long-term pool. The median of all these

measurements is taken and will be called Dbetween, since

it represents the difference between the two pools.

Similarly, the median image difference between all

pairs of long-term frames is calculated, and denoted

Dlong.

The median is used to represent the overall image

dissimilarity of multiple frames of video because it is a

robust statistic (a stable indicator of central tendency).

It is not affected by a relatively large fraction of

outliers, (i.e., transient events in our application).

Consider what happens when tampering occurs. As

new frames of video are received, one would expect the

median of the intra-short-term pool measurements to be

affected as soon as approximately half of the short-term

frames are contaminated by the tampering event. If the

length of the short-term pool is set to ten seconds, as

was done here, then it would take approximately five

seconds for the median to be effected by the camera

tampering. In this way sustained events are

distinguished from transient ones.

The two measurements are combined into a single

normalized measure as shown below:

 ()
longbetweennorm DDD /log= . (1)

The normalization above was chosen because it

accentuates differences between the short-term and

long-term pools, which is desirable in that these

differences are assumed to indicate camera tampering.

It is reminiscent of the Fisher Linear Discriminant

method, where the between-class scatter is normalized

by the sum of intra-class scatters in order to maximize

the distance between the classes while minimizing the

intra-class variance [4]. If the long- and short-term

pools are thought of as separate classes, then it is

desirable to maximize the between-class scatter when

tampering occurs in order to emphasize the event.

Furthermore, the long-term pool contains a history of

what has happened in the past, and thus normalizing by

it yields a measurement that represents the difference

between the current and past frames with respect to

past (typical) differences.

3.2. Measuring image dissimilarity

In the preceding subsection a generic measure of

image dissimilarity was assumed for simplicity of

explanation. In reality, the process described above is

repeated each time a new frame is sampled using three

different image dissimilarity functions. The ideal image

dissimilarity measure is one that is insensitive to small

camera rotations and translations, but is sensitive to

changes in both shape and color content. It should also

be illumination invariant, but not completely

insensitive to extreme changes in illumination, since

extreme changes may represent tampering. Since it

would be difficult to define one image dissimilarity

measure that exhibited all these characteristics, a

variety of measures are used here in order to extract the

most useful information. They are described below, and

values of these parameters from one of the test videos

are shown in Section 4.

3.2.1. Histogram chromaticity difference.

For each image (i.e., frame of video), a normalized

RGB histogram is calculated. This is a two-

dimensional histogram, where the two axes represent

the normalized red and green components of each

pixel, respectively (the blue component in normalized

RGB representation is uniquely determined by the

other two and is therefore ignored). The bin assignment

for pixel i with components Ri, Gi, and Bi is calculated

according to Equation (2).

To calculate the dissimilarity between two images,

the sum of absolute-value differences of their two

Proceedings of the IEEE International Conference
on Video and Signal Based Surveillance (AVSS'06)
0-7695-2688-8/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 2, 2009 at 05:50 from IEEE Xplore. Restrictions apply.

histograms is computed. For images I1 and I2 with

histograms H1 and H2, respectively, the image

dissimilarity is calculated according to:

 ()

()iiiGiG

RiiiiR

BGRNumBinsGBin

BGRNumBinsRBin

++=

++=

/

/ (2)

.),(),(

,

2112 ∑ −=
ji

jiHjiHDifference
 (3)

The normalized RGB histogram is fairly insensitive

to illumination changes, since the normalized RGB

color space is illumination-invariant for Lambertian

surfaces, and therefore the measure is sensitive only to

color change. A measure of image dissimilarity that is

even less sensitive to illumination changes could be

formulated, but the video coming from CCTV

surveillance cameras is often of poor color quality due

to the limited chrominance bandwidth, and the cameras

themselves are rarely color-calibrated. In such cases,

the computation of more sophisticated photometric

invariants based on color is not reliable.

3.2.2. Histogram L1R difference.

A two-dimensional histogram is calculated for each

image where, for each pixel, the axes are the sum (L1-

norm) and range (R) of the red, green, and blue

components of the pixel. The bin assignments for pixel

i are calculated according to the following equations:

()

() .),,min(),,max(

311

RiiiiiiR

LiiiL

NumBinsBGRBGRBin

NumBinsBGRBin

−=

++=

 (4)

Again, the dissimilarity between two images is

calculated by summing the absolute-values of

differences between the histograms of the images.

The L1-norm value for any given pixel is

proportional to its intensity, while the range is related

to its saturation. This measure is sensitive to changes in

illumination, which should be taken into account. Even

though some change in illumination should be ignored,

more extreme changes should be recognized and

considered tampering. It has also been established that

the L1-norm is a better similarity measure than the L2-

norm [3].

3.2.3. Histogram gradient direction difference.

Each image is first convolved with the 3x3 Sobel

kernels. These convolved images are used to estimate

the gradient direction Dir(i,j) at each pixel location

(i,j), where Dir(i,j) is in the range [-π, π]. Next, a one-

dimensional histogram is formed, where the axis

represents the gradient direction of a given pixel. The

bin assignment for pixel (i,j) is calculated using the

following equation:

 () GradDirGradDir NumBinsjiDirBin
2

),(1 π
π

+= . (5)

The dissimilarity between two images is given by

the sum of absolute-vale differences between the two

histograms. Since the pixel gradient orientations are

insensitive to both change in illumination and slight

camera movements, this measure is extremely robust.

3.3. Detecting camera tampering

Each time a new frame is pushed into the short-term

pool, the three dissimilarity measures described above

are computed. Based on these three values the decision

is made as to whether tampering has occurred by

evaluating a set of conditions, each of which is given

by a set of three thresholds. For each condition, if the

three thresholds are exceeded, the condition is

evaluated as true. If any of the conditions are true, the

decision is made that tampering has occurred. For all

the results presented in this paper, the thresholds were

tuned for optimal performance based on a set of

training videos.

4. Results

This algorithm was tested on an extensive set of test

videos totaling over 19 hours in duration. The videos

were filmed in a variety of different environments,

including various lighting conditions. They contained a

number of different camera tampering and non-

tampering events. In order to test the robustness of the

proposed method, the test videos contained events that

changed the scene significantly but are not considered

camera tampering. The videos contained such events

as large crowds of people entering/exiting the scene,

very large objects (i.e., trains, buses) passing through

the scene, and extreme changes in illumination, both

sudden and gradual. Figure 2 shows some snapshots

from the test videos, some with tampering.

Figure 3 shows the values of the three normalized

image dissimilarity measures for one of the test videos.

Note that these measures are responsive to camera

tampering, as shown by their increased values during

tampering events. Figure 4 shows normalized

histograms of the three dissimilarity measures for both

frames of video with and without tampering. The

histogram values were normalized by the total number

of frames in the class (tampering and non-tampering

Proceedings of the IEEE International Conference
on Video and Signal Based Surveillance (AVSS'06)
0-7695-2688-8/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 2, 2009 at 05:50 from IEEE Xplore. Restrictions apply.

frames were normalized separately) in order to equalize

the overwhelming number of frames without tampering

as compared to those with tampering. From this figure,

it can clearly be seen that for all three image features,

there is good separation between the tampering and

non-tampering frames. This is also seen in Figure 5,

which shows the scatter plot of the three feature values.

Even though there is some overlap between the two

classes, most tampering events are detected

successfully since each tampering event is a set of the

red tampering points in the figure, and only one of

them needs to be in the decision region in order for the

event to be detected.

Finally, the results for various different values of

thresholds are shown in Table 1. The column on the

left indicates the threshold values as a percentage of the

optimal values. For each set of thresholds the number

of missed events, number of false alarms, percent

alarms true (PAT), and percent events detected (PED)

are shown. Notice that as the threshold values increase,

the number of false alarms decreases, but the number

of undetected tampering events increases. When the

thresholds are optimal (the row labeled 100% in the

table), the tradeoff between the number of false alarms

Figure 2. Some frames from the test videos. The

last three snapshots include camera tampering.

and the number of missed tampering events is

optimized (roughly speaking, we consider a missed

alarm to be three times as important as a false one). At

the optimal threshold values, there were five false

alarms and one tampering event that was not detected.

However, both the events that were not detected and

those that were detected erroneously were borderline

tampering events. For example, four of the five false

alarms were due to extreme changes in illumination (a

light being flipped off), where the entire image

becomes dark for several frames until the camera

aperture size is adjusted. Events such as large crowds

entering the scene, severe changes in illumination due

to dark passing clouds, and trains and buses passing

through the scene were successfully classified as non-

tampering.

Table 1. Results for different threshold values,
given as percentages of the optimal values.

Thresholds
False
Alarms*

Missed
Events* PAT PED

75% 23 0 46.8% 100%

80% 14 0 58.8% 100%

85% 12 0 62.5% 100%

90% 10 0 66.7% 100%

95% 7 0 74.1% 100%

100% 5 1 79.2% 95%

105% 4 3 81.0% 85%

110% 4 3 81.0% 85%

115% 4 4 80.0% 80%

120% 4 4 80.0% 80%

125% 4 4 80.0% 80%

130% 4 5 79.0% 75%

135% 4 6 77.8% 70%

140% 4 6 77.8% 70%

145% 4 7 76.5% 65%

150% 4 7 76.5% 65%

* Total 20 real tampering events

4.5 5 5.5 6 6.5

x 10
4

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

frame number

p
a
ra

m
e
te

r
v
a
lu

e

HistogramChromaDist

HistogramL1RDist

HistogramGradDirDist

ground truth

Figure 3. Values of the three normalized image
dissimilarity measures. The black line
indicates when tampering occurs.

Proceedings of the IEEE International Conference
on Video and Signal Based Surveillance (AVSS'06)
0-7695-2688-8/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 2, 2009 at 05:50 from IEEE Xplore. Restrictions apply.

5. Conclusion

We have presented a technique for detection of

camera tampering that can be implemented in real-time.

The method is based on robust comparisons of recent

and older frames of video using three different

measures of image dissimilarity. Optimal threshold

values were used in order to decide whether tampering

has occurred. This method is insensitive to changes in

illumination, small camera movements, and transient

non-tampering events. Experimental results have been

presented which demonstrate a high detection rate

while at the same time issuing a very small number of

false alarms.

6. Acknowledgements

We would like to thank the Department of

Homeland Security, the ITS Institute at the University

of Minnesota, and the National Science Foundation

(through grant IIS-0219863) for their generous support

of this research.

-4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4
HistogramChromaticityDistance

-2 -1 0 1 2 3 4
0

0.2

0.4
HistogramL1RDistance

-2 0 2 4 6
0

0.2

0.4
HistogramGradDirDistance

Without Tampering

With Tampering

Figure 4. Normalized histograms of image
dissimilarity values with and without tampering.

Figure 5. Scatter-plot of image dissimilarity
values for frames with and without tampering.

References

[1] Fridrich, J., “Image Watermarking for Tamper

Detection”, Proc. of ICIP 1998, vol. 2, pp. 404-408,

1998.

[2] Heng, W.J. and Ngan, K.N., “Integrated Shot

Boundary Detection Using Object-Based Technique”,

Proc. of the Int’l Conf. on Image Processing 1999, vol.

3, pp. 289-293, October 1999.

[3] Huang, C.-L. and Liao, B.-Y., “A Robust Scene-

Change Detection Method for Video Segmentation”,

IEEE Trans. on Circuits and Systems for Video

Technology, vol. 11, pp. 1281-1288, December 2001.

[4] Muller, K.L. et al. “An Introduction to Kernel-

Based Learning Algorithms”, IEEE Trans. on Neural

Networks, vol. 12, no. 2, pp. 181-201, March 2001.

[5] Nam, J. and Tewfik, A.H., “Detection of Gradual

Transitions in Video Sequences Using B-Spline

Interpolation”, IEEE Trans. on Multimedia, vol. 7, no.

4, pp. 667-679, August 2005.

[6] Roberts, D.K., “Security Camera Video

Authentication”, Digital Signal Processing Workshop

2002 and the Signal Processing Education Workshop

2002, pp. 125-130, October 2002.

[7] Swanson, M.D. and Tewfik, A.H., “Multimedia

Data-Embedding and Watermarking Technologies”,

Proc. of IEEE, vol. 86, no .6, pp. 1064-1087, June

1998.

[8] Tomasi, C. and Kanade, T., “Shape and Motion

from Image Streams Under Orthography: a

Factorization Method”, IJCP, vol. 9, no. 2, pp. 137-

154, 1992.

[9] Weng, J. et al. “Optimal Motion and Structure

Estimation”, IEEE Trans. on PAMI, vol. 15, no. 9, pp.

864-884, September 1993.

[10] Zhao, W. et al. “Improving Color Based Video

Shot Detection”, IEEE Int’l Conference on Multimedia

Computing Systems, vol.2, pp.752-756, June 1999.

Proceedings of the IEEE International Conference
on Video and Signal Based Surveillance (AVSS'06)
0-7695-2688-8/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 2, 2009 at 05:50 from IEEE Xplore. Restrictions apply.

