
zzuf – multiple purpose fuzzer



input fuzz testing

● The idea
– randomly alter a program’s input

● Expose bugs
– user-contributed data (intarweb, e-mail)

– file parsers, interpreters...

– security implications more than often

● No magical solution
– only finds simple bugs, not all of them



what zzuf does

● Input corruption
– randomly sets or unsets bits

– uses a random s

● Fully automated
– can work on the fly

● no costly file generation

● works with DVDs, network, stdin

– reproducible behaviour
● on consecutive runs, with different programs



how zzuf works

● Controlling zzuf binary
– forks tested program

– checks stdout, exit value, signals...

● LD_PRELOAD mechanism
– intercepts file reading functions

● open(), read(), fopen(), fread()...

● plans for zlib functions, too

– also malloc() to check memory usage

– more portable than ptrace, kernel land...



example #1

● Using zzuf and cat



trivial use of cat



use cat through zzuf

-r0.001 means “fuzz 0.1% 
of the files we read”



fuzz more bits (1%)

-r0.01 means “fuzz 1% of 
the files we read”



fuzz even more bits (3.8%)

-r0.038 means “fuzz 3.8% 
of the files we read”



refuse non-printable bytes

-R\x00-\x20 means “do not 
generate characters in the 

range 0x00 to 0x20”



example #2

● Using zzuf and file



trivial use of file



Using -d (debug)

Files in /etc and /usr/share 
should not be fuzzed



Using -E (exclude)

Files in /etc and /usr/share 
are now properly ignored 

(see also -c and -I)



Using -s (seed)

-s0:5 means “use random 
seeds 0, 1, 2, 3 and 4”



Using -r with ranges

-r0.001:0.05 means 
“choose fuzzing ratios in 

the 0.1% - 5% range”



example #3

● Finding real bugs



giftopnm

Use -q to avoid flooding

Use the same -r and -s 
flags to generate a file that 
reproduces the behaviour



antiword

Many different ways to crash



mplayer/ffmpeg

Use -b to only fuzz parts of 
the input

Innocent-looking videos can 
cause a DoS or worse



other features

● Fork and parallelise (-F)

● Detect stuck processes
– Set maximum memory allocation (-M)

– Set maximum running time (-T)

– Set maximum stdout output (-B)

● Fuzz network intput (-n)

● Fuzz stdin (-i)



zzuf’s future

● Context-dependent fuzzing
– ignore or recompute CRCs

– divert the zlib library, too

● Finish the Windows® port
– help needed

● Make it easier to test GUI applications

● Attach to a debugger



http://sam.zoy.org/zzuf/

THANKS A LOT FOR
COMING EARLY AND

LISTENING

NOW YOU
CAN ENJOY YOUR
SANDWICH


