Struct serde::bytes::ByteBuf
[−]
[src]
pub struct ByteBuf { /* fields omitted */ }
ByteBuf
wraps a Vec<u8>
and serializes as a byte array.
Methods
impl ByteBuf
[src]
fn new() -> Self
Construct a new, empty ByteBuf
.
fn with_capacity(cap: usize) -> Self
Construct a new, empty ByteBuf
with the specified capacity.
fn from<T: Into<Vec<u8>>>(bytes: T) -> Self
Wrap existing bytes in a ByteBuf
.
Methods from Deref<Target = [u8]>
fn len(&self) -> usize
1.0.0
fn is_empty(&self) -> bool
1.0.0
fn first(&self) -> Option<&T>
1.0.0
Returns the first element of the slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first());
fn first_mut(&mut self) -> Option<&mut T>
1.0.0
Returns a mutable pointer to the first element of the slice, or None
if it is empty.
Examples
let x = &mut [0, 1, 2]; if let Some(first) = x.first_mut() { *first = 5; } assert_eq!(x, &[5, 1, 2]);
fn split_first(&self) -> Option<(&T, &[T])>
1.5.0
Returns the first and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((first, elements)) = x.split_first() { assert_eq!(first, &0); assert_eq!(elements, &[1, 2]); }
fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>
1.5.0
Returns the first and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &mut [0, 1, 2]; if let Some((first, elements)) = x.split_first_mut() { *first = 3; elements[0] = 4; elements[1] = 5; } assert_eq!(x, &[3, 4, 5]);
fn split_last(&self) -> Option<(&T, &[T])>
1.5.0
Returns the last and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((last, elements)) = x.split_last() { assert_eq!(last, &2); assert_eq!(elements, &[0, 1]); }
fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>
1.5.0
Returns the last and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &mut [0, 1, 2]; if let Some((last, elements)) = x.split_last_mut() { *last = 3; elements[0] = 4; elements[1] = 5; } assert_eq!(x, &[4, 5, 3]);
fn last(&self) -> Option<&T>
1.0.0
Returns the last element of the slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last());
fn last_mut(&mut self) -> Option<&mut T>
1.0.0
Returns a mutable pointer to the last item in the slice.
Examples
let x = &mut [0, 1, 2]; if let Some(last) = x.last_mut() { *last = 10; } assert_eq!(x, &[0, 1, 10]);
fn get<I>(&self, index: I) -> Option<&I::Output> where I: SliceIndex<[T]>
1.0.0
Returns a reference to an element or subslice depending on the type of index.
- If given a position, returns a reference to the element at thatposition or
None
if out of bounds. - If given a range, returns the subslice corresponding to that range,or
None
if out of bounds.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(Some(&[10, 40][..]), v.get(0..2)); assert_eq!(None, v.get(3)); assert_eq!(None, v.get(0..4));
fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output> where I: SliceIndex<[T]>
1.0.0
Returns a mutable reference to an element or subslice depending on the type of index (see get
) or None
if the index is out of bounds.
Examples
let x = &mut [0, 1, 2]; if let Some(elem) = x.get_mut(1) { *elem = 42; } assert_eq!(x, &[0, 42, 2]);
unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output where I: SliceIndex<[T]>
1.0.0
Returns a reference to an element or subslice, without doing bounds checking. So use it very carefully!
Examples
let x = &[1, 2, 4]; unsafe { assert_eq!(x.get_unchecked(1), &2); }
unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output where I: SliceIndex<[T]>
1.0.0
Returns a mutable reference to an element or subslice, without doing bounds checking. So use it very carefully!
Examples
let x = &mut [1, 2, 4]; unsafe { let elem = x.get_unchecked_mut(1); *elem = 13; } assert_eq!(x, &[1, 13, 4]);
fn as_ptr(&self) -> *const T
1.0.0
Returns a raw pointer to the slice's buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &[1, 2, 4]; let x_ptr = x.as_ptr(); unsafe { for i in 0..x.len() { assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize)); } }
fn as_mut_ptr(&mut self) -> *mut T
1.0.0
Returns an unsafe mutable pointer to the slice's buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &mut [1, 2, 4]; let x_ptr = x.as_mut_ptr(); unsafe { for i in 0..x.len() { *x_ptr.offset(i as isize) += 2; } } assert_eq!(x, &[3, 4, 6]);
fn swap(&mut self, a: usize, b: usize)
1.0.0
Swaps two elements in the slice.
Arguments
- a - The index of the first element
- b - The index of the second element
Panics
Panics if a
or b
are out of bounds.
Examples
let mut v = ["a", "b", "c", "d"]; v.swap(1, 3); assert!(v == ["a", "d", "c", "b"]);
fn reverse(&mut self)
1.0.0
Reverses the order of elements in the slice, in place.
Example
let mut v = [1, 2, 3]; v.reverse(); assert!(v == [3, 2, 1]);
fn iter(&self) -> Iter<T>
1.0.0
Returns an iterator over the slice.
Examples
let x = &[1, 2, 4]; let mut iterator = x.iter(); assert_eq!(iterator.next(), Some(&1)); assert_eq!(iterator.next(), Some(&2)); assert_eq!(iterator.next(), Some(&4)); assert_eq!(iterator.next(), None);
fn iter_mut(&mut self) -> IterMut<T>
1.0.0
Returns an iterator that allows modifying each value.
Examples
let x = &mut [1, 2, 4]; for elem in x.iter_mut() { *elem += 2; } assert_eq!(x, &[3, 4, 6]);
fn windows(&self, size: usize) -> Windows<T>
1.0.0
Returns an iterator over all contiguous windows of length size
. The windows overlap. If the slice is shorter than size
, the iterator returns no values.
Panics
Panics if size
is 0.
Example
let slice = ['r', 'u', 's', 't']; let mut iter = slice.windows(2); assert_eq!(iter.next().unwrap(), &['r', 'u']); assert_eq!(iter.next().unwrap(), &['u', 's']); assert_eq!(iter.next().unwrap(), &['s', 't']); assert!(iter.next().is_none());
If the slice is shorter than size
:
let slice = ['f', 'o', 'o']; let mut iter = slice.windows(4); assert!(iter.next().is_none());
fn chunks(&self, size: usize) -> Chunks<T>
1.0.0
Returns an iterator over size
elements of the slice at a time. The chunks are slices and do not overlap. If size
does not divide the length of the slice, then the last chunk will not have length size
.
Panics
Panics if size
is 0.
Example
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.chunks(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert_eq!(iter.next().unwrap(), &['m']); assert!(iter.next().is_none());
fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>
1.0.0
Returns an iterator over chunk_size
elements of the slice at a time. The chunks are mutable slices, and do not overlap. If chunk_size
does not divide the length of the slice, then the last chunk will not have length chunk_size
.
Panics
Panics if chunk_size
is 0.
Examples
let v = &mut [0, 0, 0, 0, 0]; let mut count = 1; for chunk in v.chunks_mut(2) { for elem in chunk.iter_mut() { *elem += count; } count += 1; } assert_eq!(v, &[1, 1, 2, 2, 3]);
fn split_at(&self, mid: usize) -> (&[T], &[T])
1.0.0
Divides one slice into two at an index.
The first will contain all indices from [0, mid)
(excluding the index mid
itself) and the second will contain all indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Examples
let v = [10, 40, 30, 20, 50]; let (v1, v2) = v.split_at(2); assert_eq!([10, 40], v1); assert_eq!([30, 20, 50], v2);
fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])
1.0.0
Divides one &mut
into two at an index.
The first will contain all indices from [0, mid)
(excluding the index mid
itself) and the second will contain all indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Examples
let mut v = [1, 2, 3, 4, 5, 6]; // scoped to restrict the lifetime of the borrows { let (left, right) = v.split_at_mut(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); }
fn split<F>(&self, pred: F) -> Split<T, F> where F: FnMut(&T) -> bool
1.0.0
Returns an iterator over subslices separated by elements that match pred
. The matched element is not contained in the subslices.
Examples
let slice = [10, 40, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:
let slice = [10, 40, 33]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[]); assert!(iter.next().is_none());
If two matched elements are directly adjacent, an empty slice will be present between them:
let slice = [10, 6, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10]); assert_eq!(iter.next().unwrap(), &[]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where F: FnMut(&T) -> bool
1.0.0
Returns an iterator over mutable subslices separated by elements that match pred
. The matched element is not contained in the subslices.
Examples
let mut v = [10, 40, 30, 20, 60, 50]; for group in v.split_mut(|num| *num % 3 == 0) { group[0] = 1; } assert_eq!(v, [1, 40, 30, 1, 60, 1]);
fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where F: FnMut(&T) -> bool
1.0.0
Returns an iterator over subslices separated by elements that match pred
, limited to returning at most n
items. The matched element is not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once by numbers divisible by 3 (i.e. [10, 40]
, [20, 60, 50]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where F: FnMut(&T) -> bool
1.0.0
Returns an iterator over subslices separated by elements that match pred
, limited to returning at most n
items. The matched element is not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
let mut v = [10, 40, 30, 20, 60, 50]; for group in v.splitn_mut(2, |num| *num % 3 == 0) { group[0] = 1; } assert_eq!(v, [1, 40, 30, 1, 60, 50]);
fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where F: FnMut(&T) -> bool
1.0.0
Returns an iterator over subslices separated by elements that match pred
limited to returning at most n
items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once, starting from the end, by numbers divisible by 3 (i.e. [50]
, [10, 40, 30, 20]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where F: FnMut(&T) -> bool
1.0.0
Returns an iterator over subslices separated by elements that match pred
limited to returning at most n
items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
let mut s = [10, 40, 30, 20, 60, 50]; for group in s.rsplitn_mut(2, |num| *num % 3 == 0) { group[0] = 1; } assert_eq!(s, [1, 40, 30, 20, 60, 1]);
fn contains(&self, x: &T) -> bool where T: PartialEq<T>
1.0.0
Returns true
if the slice contains an element with the given value.
Examples
let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50));
fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq<T>
1.0.0
Returns true
if needle
is a prefix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30]; assert!(v.starts_with(&[])); let v: &[u8] = &[]; assert!(v.starts_with(&[]));
fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq<T>
1.0.0
Returns true
if needle
is a suffix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30]; assert!(v.ends_with(&[])); let v: &[u8] = &[]; assert!(v.ends_with(&[]));
fn binary_search(&self, x: &T) -> Result<usize, usize> where T: Ord
1.0.0
Binary searches this sorted slice for a given element.
If the value is found then Ok
is returned, containing the index of the matching element; if the value is not found then Err
is returned, containing the index where a matching element could be inserted while maintaining sorted order.
Example
Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1...4) => true, _ => false, });
fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where F: FnMut(&'a T) -> Ordering
1.0.0
Binary searches this sorted slice with a comparator function.
The comparator function should implement an order consistent with the sort order of the underlying slice, returning an order code that indicates whether its argument is Less
, Equal
or Greater
the desired target.
If a matching value is found then returns Ok
, containing the index for the matched element; if no match is found then Err
is returned, containing the index where a matching element could be inserted while maintaining sorted order.
Example
Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1...4) => true, _ => false, });
fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize> where B: Ord, F: FnMut(&'a T) -> B
1.10.0
Binary searches this sorted slice with a key extraction function.
Assumes that the slice is sorted by the key, for instance with sort_by_key
using the same key extraction function.
If a matching value is found then returns Ok
, containing the index for the matched element; if no match is found then Err
is returned, containing the index where a matching element could be inserted while maintaining sorted order.
Examples
Looks up a series of four elements in a slice of pairs sorted by their second elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4]
.
let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), (1, 21), (2, 34), (4, 55)]; assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); let r = s.binary_search_by_key(&1, |&(a,b)| b); assert!(match r { Ok(1...4) => true, _ => false, });
fn sort(&mut self) where T: Ord
1.0.0
Sorts the slice.
This sort is stable (i.e. does not reorder equal elements) and O(n log n)
worst-case.
Current implementation
The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.
Also, it allocates temporary storage half the size of self
, but for short slices a non-allocating insertion sort is used instead.
Examples
let mut v = [-5, 4, 1, -3, 2]; v.sort(); assert!(v == [-5, -3, 1, 2, 4]);
fn sort_by<F>(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering
1.0.0
Sorts the slice with a comparator function.
This sort is stable (i.e. does not reorder equal elements) and O(n log n)
worst-case.
Current implementation
The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.
Also, it allocates temporary storage half the size of self
, but for short slices a non-allocating insertion sort is used instead.
Examples
let mut v = [5, 4, 1, 3, 2]; v.sort_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]);
fn sort_by_key<B, F>(&mut self, f: F) where B: Ord, F: FnMut(&T) -> B
1.7.0
Sorts the slice with a key extraction function.
This sort is stable (i.e. does not reorder equal elements) and O(n log n)
worst-case.
Current implementation
The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.
Also, it allocates temporary storage half the size of self
, but for short slices a non-allocating insertion sort is used instead.
Examples
let mut v = [-5i32, 4, 1, -3, 2]; v.sort_by_key(|k| k.abs()); assert!(v == [1, 2, -3, 4, -5]);
fn sort_unstable(&mut self) where T: Ord
sort_unstable
)Sorts the slice, but may not preserve the order of equal elements.
This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), and O(n log n)
worst-case.
Current implementation
The current algorithm is based on Orson Peters' pattern-defeating quicksort, which is a quicksort variant designed to be very fast on certain kinds of patterns, sometimes achieving linear time. It is randomized but deterministic, and falls back to heapsort on degenerate inputs.
It is generally faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.
Examples
#![feature(sort_unstable)] let mut v = [-5, 4, 1, -3, 2]; v.sort_unstable(); assert!(v == [-5, -3, 1, 2, 4]);
fn sort_unstable_by<F>(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering
sort_unstable
)Sorts the slice with a comparator function, but may not preserve the order of equal elements.
This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), and O(n log n)
worst-case.
Current implementation
The current algorithm is based on Orson Peters' pattern-defeating quicksort, which is a quicksort variant designed to be very fast on certain kinds of patterns, sometimes achieving linear time. It is randomized but deterministic, and falls back to heapsort on degenerate inputs.
It is generally faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.
Examples
#![feature(sort_unstable)] let mut v = [5, 4, 1, 3, 2]; v.sort_unstable_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_unstable_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]);
fn sort_unstable_by_key<B, F>(&mut self, f: F) where B: Ord, F: FnMut(&T) -> B
sort_unstable
)Sorts the slice with a key extraction function, but may not preserve the order of equal elements.
This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), and O(n log n)
worst-case.
Current implementation
The current algorithm is based on Orson Peters' pattern-defeating quicksort, which is a quicksort variant designed to be very fast on certain kinds of patterns, sometimes achieving linear time. It is randomized but deterministic, and falls back to heapsort on degenerate inputs.
It is generally faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.
Examples
#![feature(sort_unstable)] let mut v = [-5i32, 4, 1, -3, 2]; v.sort_unstable_by_key(|k| k.abs()); assert!(v == [1, 2, -3, 4, -5]);
fn clone_from_slice(&mut self, src: &[T]) where T: Clone
1.7.0
Copies the elements from src
into self
.
The length of src
must be the same as self
.
Panics
This function will panic if the two slices have different lengths.
Example
let mut dst = [0, 0, 0]; let src = [1, 2, 3]; dst.clone_from_slice(&src); assert!(dst == [1, 2, 3]);
fn copy_from_slice(&mut self, src: &[T]) where T: Copy
1.9.0
Copies all elements from src
into self
, using a memcpy.
The length of src
must be the same as self
.
Panics
This function will panic if the two slices have different lengths.
Example
let mut dst = [0, 0, 0]; let src = [1, 2, 3]; dst.copy_from_slice(&src); assert_eq!(src, dst);
fn to_vec(&self) -> Vec<T> where T: Clone
1.0.0
Copies self
into a new Vec
.
Examples
let s = [10, 40, 30]; let x = s.to_vec(); // Here, `s` and `x` can be modified independently.
fn into_vec(self: Box<[T]>) -> Vec<T>
1.0.0
Converts self
into a vector without clones or allocation.
Examples
let s: Box<[i32]> = Box::new([10, 40, 30]); let x = s.into_vec(); // `s` cannot be used anymore because it has been converted into `x`. assert_eq!(x, vec![10, 40, 30]);
Trait Implementations
impl Clone for ByteBuf
[src]
fn clone(&self) -> ByteBuf
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)
1.0.0
Performs copy-assignment from source
. Read more
impl Default for ByteBuf
[src]
impl Eq for ByteBuf
[src]
impl Hash for ByteBuf
[src]
fn hash<__H: Hasher>(&self, __arg_0: &mut __H)
Feeds this value into the state given, updating the hasher as necessary.
fn hash_slice<H>(data: &[Self], state: &mut H) where H: Hasher
1.3.0
Feeds a slice of this type into the state provided.
impl PartialEq for ByteBuf
[src]
fn eq(&self, __arg_0: &ByteBuf) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, __arg_0: &ByteBuf) -> bool
This method tests for !=
.
impl PartialOrd for ByteBuf
[src]
fn partial_cmp(&self, __arg_0: &ByteBuf) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
fn lt(&self, __arg_0: &ByteBuf) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
fn le(&self, __arg_0: &ByteBuf) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
fn gt(&self, __arg_0: &ByteBuf) -> bool
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
fn ge(&self, __arg_0: &ByteBuf) -> bool
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
impl Ord for ByteBuf
[src]
fn cmp(&self, __arg_0: &ByteBuf) -> Ordering
This method returns an Ordering
between self
and other
. Read more
impl Debug for ByteBuf
[src]
impl Into<Vec<u8>> for ByteBuf
[src]
impl From<Vec<u8>> for ByteBuf
[src]
impl AsRef<Vec<u8>> for ByteBuf
[src]
impl AsRef<[u8]> for ByteBuf
[src]
impl AsMut<Vec<u8>> for ByteBuf
[src]
impl AsMut<[u8]> for ByteBuf
[src]
impl Deref for ByteBuf
[src]
type Target = [u8]
The resulting type after dereferencing
fn deref(&self) -> &[u8]
The method called to dereference a value
impl DerefMut for ByteBuf
[src]
impl Serialize for ByteBuf
[src]
fn serialize<S>(&self, serializer: &mut S) -> Result<(), S::Error> where S: Serializer
Serializes this value into this serializer.
impl Deserialize for ByteBuf
[src]
fn deserialize<D>(deserializer: &mut D) -> Result<ByteBuf, D::Error> where D: Deserializer
Deserialize this value given this Deserializer
.
impl<E> ValueDeserializer<E> for ByteBuf where E: Error
[src]
type Deserializer = ByteBufDeserializer<E>
The actual deserializer type.
fn into_deserializer(self) -> Self::Deserializer
Convert this value into a deserializer.